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The velocity field within a vortex ring with
a large elliptical cross-section

By T. S. MORTON
105 Roper Mountain Court, Greenville, SC 29615, USA

(Received 19 February 2002 and in revised form 7 November 2003)

The velocity field within a steady toroidal vortex is found for arbitrary mean core
radius and section ellipticity. The problem is solved by transforming to coordinates
that define invariant sets. The method allows the properties of the coordinate system
metric tensor to be exploited in the continuity equation in order to obtain the solution.
The vorticity is found to decrease monotonically with distance from the symmetry
axis. For a given outer radius and outer perimeter velocity, the circulation of the
vortex ring can be either smaller or larger than that of Hill’s spherical vortex.

1. Introduction
The toroidal vortex can be useful in studying a variety of problems in science

and engineering, such as axisymmetric wakes, jets, and electromagnetic phenomena.
Analytical solutions for vortex rings have invariably involved Bessel functions and
asymptotic expansions (see e.g. Fukumoto & Moffatt 2000) in order to describe the
velocity distribution. These types of solutions are restricted to rings of small cross-
section, which limit the types of studies that can be made of the vortex core itself. In
the present work, an explicit algebraic expression is found for the velocity field within
the core of a vortex ring with a large elliptical cross-section.

One of the first solutions found for axisymmetric vortex regions was the spherical
vortex of Hill (1894). There are several accounts of this solution (Lamb 1932; Milne-
Thomson 1968; Panton 1984; Saffman 1992). Extensions of Hill’s spherical vortex
were found by O’Brien (1961), by allowing the sphere to distort into an ellipsoid.
A distinctive feature of Hill’s spherical vortex is the bounded velocity on the axis
of symmetry. Another axisymmetric vortex structure is the vortex ring (see Kelvin
1869; Maxwell 1891; Lamb 1932), in which the entire field is irrotational except for a
ring-shaped rotational core whose diameter is small relative to its distance from the
axis of symmetry. This small, ring-shaped core is assumed to have constant vorticity.
Lichtenstein (1925) studied a vortex ring of finite cross-section and uniform vorticity.
He found that for small cross-section, the shape of the section approximates an
ellipse, with the minor axis parallel to the axis of symmetry. The existence of steady
vortex rings in an inviscid fluid has been proved by Fraenkel (1970) and Maruhn
(1957). Examples of such vortex rings of small cross-section are given by Fraenkel
(1972) using expansions in powers and logarithms of a small cross-section parameter.
Saffman (1970) derived a formula for the propagation velocity of a vortex ring
(circular to leading order) in an ideal fluid with an arbitrary distribution of vorticity
in the core. Norbury (1972) determined a function describing the core boundary
of a family of vortex rings for a prescribed vorticity distribution and velocity of
propagation by writing the formal solution as an integral equation and solving the
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Figure 1. Spherical coordinate system used for Hill’s spherical vortex.

problem numerically. Norbury (1973) introduced a parameter, α, termed the ‘non-
dimensional mean core radius’ which varies in the range 0 <α �

√
2. It can represent a

family of vortices that include vortex rings of small cross-section, where α → 0, as well
as Hill’s spherical vortex, where α =

√
2. Hill’s spherical vortex was considered to be a

limiting case of a family of vortex rings that are possible with a vorticity distribution
given by ω(3)/R, where ω(3) is equal to the physical component of vorticity in the
direction circling the symmetry axis. This ratio, which was taken as constant, has
been referred to as a ‘vorticity constant’ (Norbury 1973) as well as a ‘vorticity density’
(Mohseni & Gharib 1998; Mohseni 2001). Hunt & Eames (2002) stated that during
axisymmetric stretching in a straining flow the quantity ω(3)/R is conserved and that
it is proportional to the circulation around a vortex element. What is seldom, if ever,
mentioned, however, is that this constant is actually the contravariant component of
the vorticity tensor, ω̃k , referenced to a spherical coordinate system defined by

x ≡ x1 = x̃1 sin(x̃2) cos(x̃3),

y ≡ x2 = x̃1 sin(x̃2) sin(x̃3),

z ≡ x3 = x̃1 cos(x̃2).

Here, x̃1 =
√

x2 + y2 + z2, x̃2 = θ , and x̃3 =φ. A diagram of the coordinate system is
shown in figure 1. The metric tensor, g̃ij , relating the spherical coordinate system to
a rectangular system is given by

g̃ij =


1 0 0

0 (x̃1)2 0

0 0 (x̃1)2 sin2(x̃2)


 .

To see that the vorticity tensor is uniform, we express the vorticity definition in the
spherical coordinate system as

ω̃i = Ẽijkṽk,j =
εijk

√
g̃

ṽk,j .

Here, εijk is the permutation symbol and Ẽijk the permutation tensor in the spherical
coordinate system. Setting i =3 and noting the orthogonality of the coordinate system,
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the above definition becomes

ω̃3 =
1√
g̃

[
∂

∂x̃1
(g̃22ṽ

2) − ∂

∂x̃2
(g̃11ṽ

1)

]
.

Employing the Stokes stream function and the fact that the physical component, ṽ(2),
of velocity in the x̃2-direction is ṽ(2) =

√
ṽ2ṽ2 =

√
g̃22ṽ

2 = x̃1ṽ2 then gives

ω̃3 =
−1

(x̃1)2 sin (x̃2)

[
∂

∂x̃1

(
1

sin (x̃2)

∂ψ

∂x̃1

)
+

∂

∂x̃2

(
1

(x̃1)2 sin (x̃2)

∂ψ

∂x̃2

)]
.

Assuming a uniform vorticity distribution in the x̃3-direction and a product solution
of the form ψ =F (x̃1) sin2(x̃2) yields the Cauchy–Euler equation (x̃1)2F ′′ − 2F =
− (x̃1)4ω̃3. This is then solved, and the requirement that velocities remain bounded as
x̃1 → 0 is imposed, giving

ψ = ω̃3

[
R2

O(x̃1)
2 − (x̃1)

4]
10

sin2(x̃2),

where ψ = 0 when x̃1 = RO . The physical components of the velocity are then found
to be

ṽ(1) =
1

(x̃1)2 sin (x̃2)

∂ψ

∂x̃2
= ω̃3

[
R2

O − (x̃1)2
]

5
cos (x̃2), (1a)

ṽ(2) =
−1

x̃1 sin (x̃2)

∂ψ

∂x̃1
= ω̃3

[
2(x̃1)2 − R2

O

]
5

sin (x̃2). (1b)

Setting ṽ(1) = 0, ṽ(2) = 0 locates the vortex centre at x̃1 = RO/
√

2, x̃2 = π/2.
To summarize, in terms of the tensor components of the spherical coordinate

system, Hill’s spherical vortex is a finite three-dimensional region of uniform vorticity,
the vorticity components being ω̃1 = 0, ω̃2 = 0, and

ω̃3 = 5vO

/
R2

O, (2)

and the quantity vO being defined as ṽ(2) at x̃1 =RO , x̃2 = π/2. The physical com-
ponent, ω̃(3), of ω̃3 is given by

ω̃(3)Hill =
√

ω̃3ω̃3 =
√

g̃33ω̃
3 = x̃1 sin(x̃2)ω̃3 = Rω̃3, (3)

which is the well-known linear dependence.
Therefore, it is only the physical component of vorticity that varies linearly with

distance from the symmetry axis. Hill’s spherical vortex is a sphere of uniform vorticity
and is analogous to the circular or elliptical patch of uniform vorticity in planar flow.

Yarmitskii (1975) outlined an extension of Hill’s solution in which an azimuthal
velocity component ṽ(3) arises inside the spherical vortex. Berezovskii & Kaplanskii
(1987) obtained a toroidal vorticity distribution in the form of an asymptotic expan-
sion. In their study, the modified Bessel function and the exponential functions
appearing in their expression for the velocity were approximated by polynomials. For
an excellent review of vortex rings, see Shariff & Leonard (1992).

For Hill’s spherical vortex, the velocity at the outer radius of the vortex is equal in
magnitude to the maximum return velocity along the axis of symmetry. For vortex
rings, however, velocities can become much greater at the inner radius than at the
outer radius. While the general shape and propagation speed of vortex rings are
known from the studies mentioned above, detailed geometrical parameters such as α
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Figure 2. Diagram illustrating the construction of the toroidal coordinate system.

and RO/RC can vary somewhat depending upon the flow configuration (see e.g. the
experimental works of Gharib, Rambod & Shariff 1998; Southerland et al. 1991;
Didden 1979; Magarvey & MacLatchy 1964; Van Dyke 1982; Ober, Lamb & Kiehne
1995). To date there has been no explicit algebraic expression for the velocity field
within the core of a vortex ring of large elliptical cross-section. The purpose of the
present work is to find such an expression and to give a fairly general formula for
the stream function.

2. Toroidal vortex solution
The general approach will be to introduce a toroidal coordinate system that places

all motion into a single variable from a Lagrangian viewpoint. The coordinate system
will define invariant sets in which the fluid particles must reside. This simplification,
along with properties of the coordinate system metric tensor, allows the continuity
equation to be manipulated into a relatively simple expression for the velocity distribu-
tion. This is then integrated round the perimeter of the vortex in order to extract an
expression for the velocity field from the circulation.

2.1. Coordinate system

The initial step in the solution is to construct a coordinate system in which contours
of two of the coordinates coincide with streamlines of the flow. In this way, time
derivatives of these will vanish, and the time derivative of the remaining coordinate
completely describes the motion of the fluid. For the toroidal vortices that form in
the wake of axisymmetric bodies, the following coordinate system (with coordinates
x̄i), defined in terms of the components x̂j of a cylindrical coordinate system, has the
desired properties:

x̂1 = z = x̄1A cos (x̄2),

x̂2 = R = x̄1B (sin (x̄2) − k) + RC,

x̂3 = φ = x̄3.


 (4)

The domain of interest is (0 � x̄1 � x̄1
max) and (0 � x̄2, x̄3 � 2π). This coordinate

definition, shown in figure 2, is similar to that used by Morton (1997) for the planar
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vortex, except for the presence of the constants k and RC . The constant k allows
the critical point in the vortex core to be shifted relative to the section centroid in a
direction that is normal to the axis of symmetry. (The axis of symmetry lies parallel to
the main flow.) The constant RC allows the entire vortex cross-section to be displaced
from the axis of symmetry. The reason for labelling the x̂j coordinates as z, R, and φ

is because the present toroidal coordinate system is described relative to a cylindrical
coordinate system (see figure 2). Contours of x̄1 correspond to streamlines of the flow.
The distance x̂2 = RC from the torus axis of symmetry to the critical point within the
vortex cross-section is found by setting x̄1 = 0. The constant k can be evaluated by
computing x̂2 on the outer streamline, that is, where x̄1 = x̄1

max and x̄2 = −π/2. (Note
that the points on x̄2 = ±π/2 lie on a line normal to the axis of symmetry.) This gives

k =
(RC − RI ) − b

b
� (−1 < k < 1) (5)

where b = x̄1
maxB . (This definition preserves the area formula: S = π ab). Similar

reasoning for the point (x̄1
max, π/2) yields the relation RO = RI + 2b. Defining the

constants A and B as A= cosh(q), B = sinh(q) for q > 0, allows the axis ratio of
concentric ellipses to remain constant as x̄1 and x̄2 vary independently. It also ensures
the useful identity

A2 − B2 = 1. (6)

Note that q → ∞ corresponds to a circular vortex.
Considering now the coordinates x̂j to be components of a cylindrical coordinate

system, the transformation can be made to a Cartesian coordinate system, xk , as
follows:

x1 = R cos φ = x̂2 cos (x̂3),

x2 = R sin φ = x̂2 sin (x̂3),

x3 = z = x̂1.


 (7)

This coordinate definition is also shown graphically in figure 2.
The metric tensor ḡjq relating the toroidal coordinate system to the rectangular

system can be found by equating distance in the two coordinate systems, as follows:

ds2 =

3∑
k=1

dxk dxk =

3∑
k=1

∂xk

∂x̂i

∂x̂i

∂x̄j
dx̄j ∂xk

∂x̂p

∂x̂p

∂x̄q
dx̄q = ḡjq dx̄j dx̄q ,

where

ḡjq ≡
(

3∑
k=1

∂xk

∂x̂i

∂xk

∂x̂p

)
∂x̂i

∂x̄j

∂x̂p

∂x̄q
= ĝip

∂x̂i

∂x̄j

∂x̂p

∂x̄q
(8)

and ĝip is the familiar metric tensor relating a cylindrical coordinate system to a
rectangular system. In this case, its form is

ĝip =


1 0 0

0 1 0

0 0 R2


 .



252 T. S. Morton

Computing the partial derivatives in (8), the desired metric tensor ḡjq becomes

ḡjq =


A2 cos2(x̄2) + B2(sin (x̄2) − k)2 x̄1 cos (x̄2)[B2(sin (x̄2) − k) − A2 sin (x̄2)] 0

(x̄1)2[A2 sin2 (x̄2) + B2 cos2(x̄2)] 0

R2


.

Only the upper triangular elements of the symmetric metric tensor are shown. The
Jacobian of the transformation from the toroidal coordinate system to the rectangular
system can be found by computing the appropriate partial derivatives, as follows:

∂xi

∂x̄j
=

∂xi

∂x̂k

∂x̂k

∂x̄j
=




cos(x̂3)B(sin(x̄2) − k) cos(x̂3)x̄1B cos(x̄2) −x̂2 sin(x̂3)

sin(x̂3)B(sin(x̄2) − k) sin(x̂3)x̄1B cos(x̄2) x̂2 cos(x̂3)

A cos(x̄2) −x̄1A sin(x̄2) 0


 .

The Jacobian determinant
√

ḡ is therefore√
ḡ = x̂2x̄1AB(1 − k sin (x̄2)), (9)

and

ḡ = g33(x̄
1AB)2(1 − k sin (x̄2))2.

The inverse of the metric tensor is

ḡij =
1

ḡ



(ḡ22ḡ33 − ḡ23ḡ32) (ḡ13ḡ32 − ḡ12ḡ33) (ḡ12ḡ23 − ḡ13ḡ22)

(ḡ23ḡ31 − ḡ21ḡ33) (ḡ11ḡ33 − ḡ13ḡ31) (ḡ13ḡ21 − ḡ11ḡ23)

(ḡ21ḡ32 − ḡ22ḡ31) (ḡ12ḡ31 − ḡ11ḡ32) (ḡ11ḡ22 − ḡ12ḡ21)


 .

However, due to the zero elements in ḡjq , the inverse of the metric tensor simplifies
to

ḡij =




ḡ22ḡ33

ḡ

−ḡ12ḡ33

ḡ
0

−ḡ21ḡ33

ḡ

ḡ11ḡ33

ḡ
0

0 0
1

ḡ33




. (10)

2.2. Continuity equation

Having constructed the streamline coordinate system, the velocity field can be found
by applying the continuity equation in the new coordinate system:

v̄i
,i = 0. (11)

Following the rules for covariant differentiation of the contravariant velocity vector
in the toroidal coordinate system, the incompressible continuity equation is

∂v̄k

∂x̄k
+ Γ̄ k

ikv̄
i = 0, (12)

where Γ̄ k
i j are the Christoffel symbols of the second kind given by

Γ̄ k
ij =

ḡkp

2

(
∂ḡpi

∂x̄j
+

∂ḡpj

∂x̄i
− ∂ḡij

∂x̄p

)
. (13)
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The only non-zero velocity component in the toroidal coordinate system is dx̄2/dt

(recall that the curves x̄1, x̄3 = const. are streamlines across which no fluid passes).
With this simplification, the continuity equation (12) becomes

∂v̄2

∂x̄2
+ Γ̄ 1

2 1v̄
2 + Γ̄ 2

2 2v̄
2 + Γ̄ 3

2 3v̄
2 = 0. (14)

Substituting (13) into (14) with i = 2, and j and k equal within each term, we have

0 =
∂v̄2

∂x̄2
+

[
1

2
ḡ11

(
∂ḡ12

∂x̄1
+

∂ḡ11

∂x̄2
− ∂ḡ21

∂x̄1

)
+

1

2
ḡ12

(
∂ḡ22

∂x̄1
+

∂ḡ21

∂x̄2
− ∂ḡ21

∂x̄2

)]
v̄2 (j, k =1)

+

[
1

2
ḡ21

(
∂ḡ12

∂x̄2
+

∂ḡ12

∂x̄2
− ∂ḡ22

∂x̄1

)
+

1

2
ḡ22

(
∂ḡ22

∂x̄2
+

∂ḡ22

∂x̄2
− ∂ḡ22

∂x̄2

)]
v̄2 (j, k =2)

+

[
1

2
ḡ33

(
∂ḡ32

∂x̄3
+

∂ḡ33

∂x̄2
− ∂ḡ23

∂x̄3

)]
v̄2 (j, k =3).

By the symmetry in the two indices of both ḡij and ḡij , the continuity equation
simplifies to

∂v̄2

∂x̄2
+

[
1

2
ḡ11

(
∂ḡ11

∂x̄2

)
+ ḡ21

(
∂ḡ12

∂x̄2

)
+

1

2
ḡ22

(
∂ḡ22

∂x̄2

)
+

1

2
ḡ33

(
∂ḡ33

∂x̄2

)]
v̄2 = 0.

The indices of ḡij are then lowered using (10) to give

∂v̄2

∂x̄2
+

v̄2

2ḡ

[
ḡ22ḡ33

(
∂ḡ11

∂x̄2

)
− 2ḡ12ḡ33

(
∂ḡ12

∂x̄2

)
+ ḡ11ḡ33

(
∂ḡ22

∂x̄2

)
+

ḡ

ḡ33

(
∂ḡ33

∂x̄2

)]
= 0.

Using the fact that ḡ/ḡ33 = (ḡ11ḡ22 − ḡ12ḡ21), the partial derivatives can be combined
into one, as follows:

∂v̄2

∂x̄2
+

v̄2

2ḡ

∂[(ḡ11ḡ22 − ḡ12ḡ12)ḡ33]

∂x̄2
= 0. (15)

The quantity in brackets is recognized as the determinant, ḡ; therefore the continuity
equation reduces to

∂[ḡv̄2v̄2]

∂x̄2
= 0. (16)

Integrating with respect to x̄2 gives

ḡv̄2v̄2 = F (x̄1).

In general, the constant of integration, F , may depend on x̄1. Solving for velocity
gives

v̄2 =
f (x̄1)√

ḡ
, v̄1, v̄3 = 0. (17)

Therefore, in the toroidal coordinate system, the velocity along any given streamline
is inversely proportional to the Jacobian determinant. This reciprocal dependence on
the Jacobian also holds for planar elliptical and circular vortices regardless of the
vorticity distribution. At this point, specifics about the coordinate system have not
been introduced. In obtaining (17), the only restrictions employed were that contours
of one of the coordinates coincide with streamlines of the flow and that the velocity
in the streamlined coordinate system is independent of the third coordinate direction.
These two conditions can be restated as follows:
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(i) The coordinate system must be such that all quantities are independent of one
of the coordinate directions in a subspace V of �3 (in our case, x̄3 ∈ V ⊂ �3),

(ii) the velocity components in the remaining quotient space M2 = �3/V are
parametrized by a single coordinate (x̄2 in our case); the other coordinate in M2

(x̄1 in our case) is a constant of the motion.
Computing the vorticity using (17) shows that ω̄1, ω̄2 = 0 in the toroidal coordinate

system. For the remaining coordinate direction, it will be useful to define the average
of the vorticity tensor as follows:

ω̄3
A =

∫
ω̄3 dS̄3∫

dS̄3

. (18)

This allows the integral for the circulation to be performed on known geometrical
parameters, as follows:

Γ =

∫
S̄

ω̄3 dS̄3 = ω̄3
A

∫
S̄

dS̄3. (19)

Note that the denominator of (18) is not the physical area but rather

S̄3(x̄
1) ≡ S̄3 =

∫
S̄

dS̄3 =

∫ 2π

0

∫ x̄1

0

√
ḡ dx̄1 dx̄2. (20)

The physical area is

S̄(3) =

∫
S̄

√
dS̄3 dS̄3 =

∫
S̄

√
ḡ33 dS̄3 dS̄3 =

∫
S̄

√
ḡ33 dS̄3 =

∫
S̄

dS̄3√
ḡ33

=

∫ 2π

0

∫ x̄1

0

√
ḡ√

ḡ33

dx̄1 dx̄2.

The formula for the circulation will be used to obtain an expression for the velocity
field. We begin by writing the area integral:

Γ =

∫
S

(∇ × v) · dS =

∫
S̄

εijk

√
ḡ

v̄k,j dS̄i . (21)

We raise the index of the velocity tensor in (21) and let i = 3 since ω̄3 is the only
non-zero vorticity component. Then, since v̄2 is the only non-zero velocity component
in the toroidal coordinate system, we have

Γ =

∫ 2π

0

∫ x̄1
max

0

[
∂(ḡ22v̄

2)

∂x̄1
− ∂(ḡ12v̄

2)

∂x̄2

]
dx̄1 dx̄2. (22)

Note that both terms in the integrand are non-zero locally and therefore contribute
to the local vorticity tensor (see (53)). However, the second term integrates to zero
so that the circulation can be calculated by the first term alone. Continuing with the
integration of the first term in (22) gives

Γ =

∫ 2π

0

(ḡ22v̄
2)|x̄1

max
dx̄2 −

∫ 2π

0

(ḡ22v̄
2)|x̄1=0 dx̄2. (23)

By evaluating ḡ22 at x̄1 = 0, we find that the far right term of (23) is zero, and we are
left with a single closed line integral along any streamline (in this case the streamline
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corresponding to x̄1
max). This proves Stokes’ theorem for the present coordinate system,

namely ∫
ω · dS =

∮
v · ds

or in index notation ∫
S

ω̄k dS̄k =

∮
ḡij v̄

i dx̄j (24)

where the closed line integral along a curve of constant x̄1 encloses the area S. Since
v̄2 is the only non-zero component in the toroidal coordinate system, i = 2 in (24).
The integral of the velocity is performed over the coordinate x̄2 with x̄1 and x̄3 held
constant; therefore, j =2. Applying Stokes’ theorem on any streamline therefore gives

Γ (x̄1) =

∮
(ḡ22v̄

2)|x̄1 dx̄2 (25)

where v̄2 is given by (17). Recall that since the function f in (17) is dependent only
upon x̄1, it remains constant along any given streamline. This is important because it
allows this unknown function f to be pulled out of the integral in (25), as follows:

Γ (x̄1) = f (x̄1)

∮ (
ḡ22√

ḡ

)∣∣∣∣
x̄1

dx̄2. (26)

Therefore, the integral for the circulation can be performed on known properties of
the coordinate system.

It is at this point that details about the coordinate system metric tensor must be
utilized in (26). Doing so gives

Γ (x̄1) = f (x̄1)x̄1x̄1

∫ 2π

0

(B2 + sin2(x̄2))√
ḡ

dx̄2,

Γ (x̄1) =
x̄1f (x̄1)

AB

∫ 2π

0

(B2 + sin2(x̄2))

(x̄1B(sin(x̄2) − k) + Rc)(1 − k sin(x̄2))
dx̄2.

The integral can be simplified somewhat by first performing the polynomial division
in the integrand, to give

Γ (x̄1) =
f (x̄1)

AB2

[∫ 2π

0

1

−k
dx̄2 +

∫ 2π

0

α sin(x̄2) + β

(sin(x̄2) + c)(1 − k sin(x̄2))
dx̄2

]
(27)

where

α = α(x̄1) =

(
1

k
− c

)
, β = β(x̄1) =

(
B2 +

c

k

)
,

and

c = c(x̄1) =
Rc

x̄1B
− k. (28)

Using partial fractions of the second term in (27), the integral can be simplified still
further:

Γ (x̄1) =
f (x̄1)

AB2

[ ∫ 2π

0

1

−k
dx̄2 +

∫ 2π

0

−αc + β

(1 + kc)(sin(x̄2) + c)
dx̄2

+

∫ 2π

0

α + βk

(1 + kc)(1 − k sin(x̄2))
dx̄2

]
.
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Integrating then gives

Γ (x̄1) =
f (x̄1)

AB2

[
2π

(
1

−k
+

−αc + β

(1 + kc)
√

c2 − 1
+

α + βk

(1 + kc)
√

1 − k2

)]

which can be further simplified to

Γ (x̄1) =
f (x̄1)

AB2

[
2π

(
1

−k
+

B2 + c2

(1 + kc)
√

c2 − 1
+

1/k + B2k

(1 + kc)
√

1 − k2

)]
or

Γ (x̄1) =
2π f (x̄1)

AB2
[P (x̄1) + Q(x̄1)], (29)

where

P (x̄1) =
B2 + c2

(1 + kc)
√

c2 − 1
, Q(x̄1) =

(−1/k − c)
√

1 − k2 + 1/k + B2k

(1 + kc)
√

1 − k2
.

Note that Q(x̄1) → −c(x̄1) as the offset k → 0. The circulation, as written in (29), is
a function of only x̄1. Moreover, it is known from (19) that this dependence is purely
geometrical; that is,

Γ (x̄1) = ω̄3
AS̄3(x̄

1). (30)

Therefore, we use (30) to construct the requirement that the ratio Γ (x̄1)/S̄3(x̄
1)

evaluated at, say, the outer streamline (x̄1 = x̄1
max) be equal to the same quantity

evaluated along any other streamline. In other words, ω̄3
A(x̄1) = ω̄3

A(x̄1
max) for all x̄1 in

the vortex. We therefore set

1 =
ω̄3

A

(
x̄1

max

)
ω̄3

A(x̄1)
=

S̄3(x̄
1)f

(
x̄1

max

)
S̄3

(
x̄1

max

)
f (x̄1)

[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
[P (x̄1) + Q(x̄1)]

. (31)

The function f (x̄1
max) corresponding to the outermost streamline will be eliminated

by expressing it in terms of the physical velocity, vO , at the point on the perimeter of
the toroidal vortex farthest from the axis of symmetry, which is taken as known. This
is done by first finding the expression for the magnitude of the velocity, as follows:

|v|2 = ḡij v̄
i v̄j ,

� |v| =
√

ḡ22v̄
2,

|v| = x̄1
√

B2 + sin2(x̄2)v̄
2. (32)

Substituting (17) into (32) and evaluating at the point (x̄1, x̄2) = (x̄1
max, π/2) gives

vO =
x̄1

max

√
B2 + 1f

(
x̄1

max

)
√

ḡ
(
x̄1

max, π/2
)

where vO is the velocity at the outer perimeter point and, from (9),√
ḡ
(
x̄1

max, π/2
)

= ROx̄1
maxAB(1 − k).

Therefore,

vO =
f

(
x̄1

max

)
ROB(1 − k)

. (33)
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Here, the useful identity in (6) has been used. Solving (31) for f (x̄1) and using (33)
to eliminate f (x̄1

max) from the result gives

f (x̄1) = vOROB(1 − k)
S̄3(x̄

1)

S̄3

(
x̄1

max

) [
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
[P (x̄1) + Q(x̄1)]

= vOROB(1 − k)

(
x̄1

x̄1
max

)3
c

cmax

[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
[P (x̄1) + Q(x̄1)]

, (34)

where the relation S̄3 = πAB2(x̄1)3c obtained from (20) has been used to eliminate
S̄3(x̄

1). The simplest way to determine the average of the vorticity tensor is to write
(29) and (30) for x̄1

max rather than x̄1, eliminate Γ (x̄1
max) from the two equations, and

solve for ω̄3
A. Equation (33) is then substituted into the result, to give

ω̄3
A =

8vORO(RO − RC)
[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
a2B2

(
R2

O − R2
I

) . (35)

Here, the fact that (1 − k)/cmax = 2(RO − RC)/(RO + RI ) ((28) and (5)) has been used.
As indicated by (35), the average of the vorticity tensor is uniform, being independent
of x̄1, x̄2, and x̄3.

An expression for the velocity in the toroidal coordinates can be obtained by
substituting (34) into (17). The result is

v̄2 =
2vOROBc√

ḡ

(
x̄1

x̄1
max

)3
(RO − RC)

(RO + RI )

[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
[P (x̄1) + Q(x̄1)]

. (36)

This solution can be verified by substituting (35) and (36) into (24).

2.3. Rectangular coordinates

The velocity distribution can be transformed to a rectangular coordinate system by
means of the transformation vi =(∂xi/∂x̄j )v̄j , which gives

vi =




cos(x̂3)x̄1B cos(x̄2)

sin(x̂3)x̄1B cos(x̄2)

−x̄1A sin(x̄2)


 v̄2. (37)

The velocity field can be viewed on any plane through the axis of symmetry. For
example, on the plane made by, say, x̂3 = π/2, we have

vi =




0

x̄1B cos(x̄2)

−x̄1A sin(x̄2)


 v̄2. (38)

2.4. The stream function

The purpose of the stream function is to map two independent variables into a single
dependent variable, ψ . In the present work, this is accomplished with the variable v̄2,
whose connection with the stream function will now be explained.

The stream function is found by choosing the function so that the continuity
equation is satisfied identically due to a cancellation of identical terms. The stream
function for two-dimensional flow has been found to be related to components of the
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velocity tensor by

vα =
J αβ

√
g

∂ψ

∂xβ
(α, β = 1, 2) (39)

where
√

g is the Jacobian of the pertinent coordinate system relative to a Cartesian
system, and J αβ is the symplectic matrix given by:

J αβ =

[
0 1

−1 0

]
.

Equation (39) holds for stream functions in rectangular, cylindrical, and spherical
coordinate systems, as well as the toroidal coordinate system studied here. In spherical
coordinates for example, (39) results in the Stokes stream function. By comparing
(39) with (17), we see that

∂ψ

∂x̄1
= −f (x̄1). (40)

This equation does, in fact, force the continuity equation (16), which can be restated
as

∂(
√

ḡv̄2)

∂x̄2
= 0, (41)

to be satisfied identically because the choice of the coordinate system renders the
stream function independent of x̄2. The coordinate x̄2 is an angle variable, and x̄1

plays the role of an action variable (Arnol’d 1978; Fountain et al. 2000). Equation
(41) is valid regardless of the vorticity distribution. To see that (41) is satisfied by
(39), substitute (39) into (41), giving

∂

∂x̄2

[√
ḡ

(
−1√

ḡ

∂ψ

∂x̄1

)]
= − ∂

∂x̄2

(
∂ψ

∂x̄1

)
,

which, by (40), is zero. Consequently, the stream function can be found by integrating
(40), as follows:

ψ = −
∫

f (x̄1) dx̄1. (42)

The following discussion is not restricted to the toroidal coordinate system and
vortex studied thus far. Therefore, quantities in such general discussions will not be
written with overbars. By reasoning similar to that used to derive (15), the general
continuity equation for the steady flow of a variable-density fluid, with v1, v2, and v3

non-zero, can be shown to be

ρ
∂vi

∂xi
+

ρvi

2g

∂g

∂xi
+ vi ∂ρ

∂xi
= 0. (43)

Grouping terms as done in obtaining (16) reduces the continuity equation to

1

ρ
√

g

∂

∂xi
(ρ

√
gvi) = 0. (44)

The continuity equation given in (44), which states that the Lie derivative of the
quantity ρ

√
g is zero, is valid for any steady flow in any coordinate system. For

complicated coordinate systems, this form is more convenient than formulations such
as (12). For an incompressible fluid the density, ρ, in (44) can be omitted. If the flow
is such that quantities do not depend upon, say, x3 (condition (i) of § 2.2), we can
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write (44) as two separate statements:

∂

∂xα
(ρ

√
gvα) = 0 (xα ∈ M2) (45)

and
∂

∂x3
(ρ

√
gv3) = 0 (x3 ∈ V ) (46)

where M2 = �3/V . Equation (45) leads immediately to a further generalization of
(39) for compressible flows:

vα =
J αβ

ρ
√

g

∂ψ

∂xβ
(xα ∈ M2) (47)

where ψ : M2 → � is the stream function for any coordinate system parametrizing
M2. Substituting (47) into (45) and expanding, we find that

∂

∂x1

(
∂ψ

∂x2

)
− ∂

∂x2

(
∂ψ

∂x1

)
= 0,

which shows the cancellation of identical terms typically seen in stream function
formulations. The difference here is that the space M2 spanned by x1 and x2 need not
be planar, and the coordinate system need not be linear nor orthogonal. The velocity
component in V need not be zero but must satisfy (46). Equations (45) and (46)
and the stream function in (47) are valid for any flow for which some subspace V ,
sufficient to satisfy (46), can be found and divided out of �3, leaving only the space
M2 in which to solve the two-dimensional portion of the problem. When streamline
coordinates are found, condition (ii) of § 2.2 is also satisfied, and each term in (44) is
zero individually, as in the case of the present toroidal vortex.

Using the Poisson bracket, given by

{, ψ} =

(
∂ψ

∂x2

∂

∂x1
− ∂ψ

∂x1

∂

∂x2

)
,

(47) can also be written in the form

ẋ =
1

ρ
√

g
{x, ψ}

with x ∈ M2; ψ : M2 → �.

2.5. Vorticity

It is well known that, in two-dimensional flow, replacing the velocity components
in the vorticity definition (ω = ∇ × v) with derivatives of the stream function results
in the following Poisson equation: ω = −∇2ψ . While this is true for rectangular and
cylindrical coordinate systems, it is not true for the spherical coordinate system, nor is
it true for the toroidal coordinate system used in this work. The more general relation
can be found by substituting (39) (or (47)) into the following definition of vorticity:

ωi = Eijkvk,j =
εijk

√
g

(gkαv
α),j .

The substitution gives

ωi =
εijk

√
g

∂

∂xj

(
gkαJ

αβ

√
g

∂ψ

∂xβ

)
(α, β 
= i). (48)
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To find the vorticity in the third coordinate direction due to motion in the other two,
we let i =3 in (48). This gives

ω3 =
1

√
g

[
∂

∂x1

(
g2αJ

αβ

√
g

∂ψ

∂xβ

)
− ∂

∂x2

(
g1αJ

αβ

√
g

∂ψ

∂xβ

)]
. (49)

Expanding the indices and noting that J αβ =0 when α =β , gives

ω3 =
1

√
g

[
∂

∂x1

(
g21√

g

∂ψ

∂x2

)
− ∂

∂x1

(
g22√

g

∂ψ

∂x1

)
− ∂

∂x2

(
g11√

g

∂ψ

∂x2

)
+

∂

∂x2

(
g12√

g

∂ψ

∂x1

)]
.

(50)

In rectangular and cylindrical coordinate systems, the right-hand side of (50) reduces
to the two-dimensional Laplacian operator. For example, in the cylindrical coordinate
system (with ĝ22 = R2) (50) becomes

ω̂3 =
−1√

ĝ

∂

∂x̂1

(
ĝ22√

ĝ

∂ψ

∂x̂1

)
− 1√

ĝ

∂

∂x̂2

(
ĝ11√

ĝ

∂ψ

∂x̂2

)
(51)

or

−ω =
1

R

∂

∂R

(
R

∂ψ

∂R

)
+

1

R2

∂2ψ

∂θ2
, (52)

which is indeed the Poisson equation, ∇2ψ = −ω, in cylindrical coordinates. When
ω = 0 or ω = −λ2ψ , (52) is separable by assuming a product solution, the case
ω = −λ2ψ leading to a Bessel equation.

Returning now to the more general equation (48), if we require that the coordinate
system coincide with streamline coordinates, then we obtain (49) for the third
coordinate direction. And since ∂ψ/∂x̄2 = 0, we can make the limitation β = 1 so
that α =2. The result is

ω̄3 =
−1√

ḡ

[
∂

∂x̄1

(
ḡ22√

ḡ

dψ

dx̄1

)
− ∂

∂x̄2

(
ḡ12√

ḡ

dψ

dx̄1

)]
, (53)

which is valid for steady vortex flows satisfying conditions (i) and (ii) of § 2.2,
regardless of the vorticity distribution. Note that when calculating the local vorticity
tensor, the second term on the right-hand side of (53) is non-zero. Recall, however,
that because of its symmetry properties, it integrates to zero when calculating the
circulation (equation (22)). To see this, substitute (53) back into (19) and perform the
integration.

Equation (50) is not separable; however, by the change to streamline coordinates,
(53) is separable. This is because ∂ψ/∂x̄2 = 0. Rearranging (53) as

ω̄3 = − ḡ22

ḡ

d2ψ

d(x̄1)2
+

1√
ḡ

[
∂

∂x̄2

(
ḡ12√

ḡ

)
− ∂

∂x̄1

(
ḡ22√

ḡ

)]
dψ

dx̄1
(54)

reveals the form ψ ′′ + P (x̄1)ψ ′ = h(x̄1), where the functions P and h depend on x̄2 as
well as x̄1.

Summarizing, in streamline coordinates the general form of the function L in the
relation

ω = L(ψ) (55)

is

L = − ḡ22

ḡ

d2

d(x̄1)2
+

1√
ḡ

[
∂

∂x̄2

(
ḡ12√

ḡ

)
− ∂

∂x̄1

(
ḡ22√

ḡ

)]
d

dx̄1
. (56)
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If a streamline coordinate system cannot be found, then (48) must be used in place
of (54). By referring to (50), equation (48) can be cast in terms of the symplectic
matrix J αβ , as follows:

ωi =
J γηJ αβ

√
g

∂

∂xα

(
gβγ√

g

∂ψ

∂xη

)
(α, β, γ, η 
= i). (57)

In complex-lamellar flows, wherein ω · v =0, coordinate systems in which vi = vi(xj )
with xj ∈ �3 can be transformed to one wherein v̄i = v̄i(x̄α) with x̄α ∈ M2 = �3/V

and ω̄3 ∈ V . In our streamline coordinate system, condition (ii) in § 2.2 is also satisfied
so that (55) is separable. This is because, within the two-dimensional manifold M2,
contours of x̄2 follow an invariant set that is selected by changing x̄1.

2.6. Angular momentum

The angular momentum within the vortex is given by

p̄i = (x × ρ v)i = εijkρ
√

ḡ x̄j v̄k.

Using (47) to represent v̄k , we have

p̄i = −εijk x̄j J kp ∂ψ

∂x̄p
. (58)

Since J kp = 0 when k = p, (58) reduces to

p̄i = −x̄α ∂ψ

∂x̄α
(α 
= i). (59)

If p̄i ∈ V ⊂ �3, then α is summed over the two-dimensional quotient space M2 = �3/V .
For complex-lamellar flows, V is the one-dimensional subspace containing the vortex
axis of rotation. For the problem at hand, (59) is applied in streamline coordinates
with p̄3 ∈ V ; therefore, i = 3 in (59):

p̄3 = −x̄1 dψ

dx̄1
. (60)

Therefore, the angular momentum throughout the core of the toroidal vortex is
independent of x̄2 and x̄3, remaining constant during the motion.

3. Results and discussion
Since x̄3 and x̃3 are coincident (compare figure 1 and figure 2), the vorticity tensors

in the spherical and toroidal coordinate systems are both directed along the same
curves. In fact, by the same reasoning used to obtain (3), the physical component of
vorticity in the core of the vortex ring is

ω̄(3) =
√

ḡ33ω̄
3 = Rω̄3

which is the same as the relation found for Hill’s spherical vortex. The quantity R in
both cases is the distance from the axis of symmetry.

The cross-section area of the core of Hill’s spherical vortex differs from the cross-
section area of the sphere itself by a factor of 2. Therefore, the ratio of the radius of
the sphere to the mean core radius of the spherical vortex is

√
2. For a vortex ring of

elliptical cross-section, the core area is πab. Therefore, its mean core radius, ξ , is

ξ =
√

ab =

√(
a

b

)
b2 =

(RO − RI )

2

√
a

b
.
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Figure 3. Toroidal vortex with vO = 1, axis ratio a/b = 1.5, RO/RC = 1.576, α = 0.706, offset
k = 0, and Γ/ΓHill = 1.0. (a) Velocity magnitude through the vortex centre for the present
vortex ring (solid curve) and for Hill’s spherical vortex (dashed curve), (b) physical vorticity
profile through centre.

The parameter, α = ξ/RC , by which Norbury (1973) defined a family of vortex rings
with constant ω(3)/R can be defined for vortex rings with elliptical cross-sections as

α =
(RO − RI )

2RC

√
a

b
(61)

where RO , RC , and RI are the distances from the axis of symmetry to the outer radius,
the centre, and the inner radius, respectively. The latter also corresponds to the radius
of the central jet penetrating the vortex ring. Gharib et al. (1998) show clearly this
separation of the vortex region from the jet-like region along the axis of symmetry.

The velocity magnitude within the core of the vortex ring is found by substituting
(36) for v̄2 into (32). Figures 3–5 show comparisons of the velocity profile through
the vortex centre as a function of R/RC , the dimensionless distance from the axis
of symmetry. In all three cases, the shift constant, k, was chosen so as to eliminate
any discontinuity in the vorticity profile. Figure 3 shows the velocity profile for the
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Figure 4. Toroidal vortex with vO = 1.0, axis ratio a/b = 1.5, RO/RC = 1.381, α = 0.466,
offset k = 0, and Γ/ΓHill = 0.5. (a) Velocity magnitude through the vortex centre, (b) physical
vorticity profile through centre.

toroidal vortex ring and for Hill’s spherical vortex having equal outer radii, RO , outer
velocities, vO , and circulation. Unlike Hill’s spherical vortex, however, this requires
that α <

√
2 and vI/vO > 1 for the vortex ring. This is due to the topological difference

between the vortex ring and the spherical vortex. The possibility that the central jet
velocity becomes large is purely the result of a constricted reverse flow area as
RI → 0. Hill’s spherical vortex also has an infinite increase in velocity along the axis
of symmetry, but it is of a less apparent nature. The flow on the bounding streamline
in the spherical vortex increases from a velocity of zero at the rear stagnation point
to a finite value as it passes through the constriction during its reversal. In fact, the
forward and rear stagnation points in Hill’s spherical vortex are a direct result of the
boundedness of the velocity that is assumed in obtaining its solution (see § 1). The
vortex ring does not have such a point of zero velocity anywhere on its boundary,
and this allows it to attain large velocities as the reverse flow area decreases when RI

becomes small. Note from figure 4 and figure 5 that for a given vortex outer radius,
the circulation of the vortex ring can be either smaller or larger than that of Hill’s
spherical vortex.

As mentioned earlier, the velocities at the inner and outer radii on the vortex ring
are equal in the case of Hill’s spherical vortex. As seen from the above figures, this
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Figure 5. Toroidal vortex with vI /vO = 5.523, axis ratio a/b = 1.5, RO/RC =1.693,
RI/RC = 0.307, α = 0.849, offset k = 0, and Γ/ΓHill = 1.5, (a) Velocity magnitude through the
vortex centre, (b) physical vorticity profile through centre.

need not be true for a toroidal vortex ring. A simple relation can be given for this
velocity ratio. From (32), the velocity magnitudes at the outer and inner radii of the
toroidal vortex ring are, respectively,

v = av̄2
(
x̄1

max, ±π/2
)
. (62)

From (36), the velocity at any point on the perimeter is, in the elliptical coordinate
system,

v̄2
P =

vOROB(1 − k)√
ḡ
(
x̄1

max, θ
) , (63)

where the subscript P denotes ‘perimeter’. To obtain the physical velocity magnitude
at the outer and inner radii, substitute (63) into (62) and evaluate at the points
(x̄1

max, ±π/2), respectively. The result is

vI

vO

=
RO

RI

(1 − k)

(1 + k)
,
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where vI is the velocity at the inner radius. Using (5) and the fact that (RO − RI ) = 2b

gives

vI

vO

=
RO

RI

(RO − RC)

(RC − RI )
. (64)

While the velocity field generally depends upon the axis ratio of the vortex ring, (64)
indicates that the ratio vI/vO does not. If fact, the effect of vortex axis ratio on the
entire velocity profile along the centreline is minimal. If all streamlines are concentric
with centres located by k = 0, then (64) simplifies to

vI

vO

=
RO

RI

. (65)

3.1. Momentum

The governing momentum equation is

1

2
ρ∇(v · v) − ρ(v × ω) = −∇p + µ∇2v.

Shariff & Leonard (1992) noted that in steady planar vortices, nonlinear terms
balance each other over a large portion of their cores, implying an inviscid vortex
structure. They then pointed out, however, that for laminar vortex rings, it is difficult
to determine the degree to which such a balance is achieved. In order to study this
question further, we write the momentum equation in an alternative form by taking
its curl:

v · ∇ω = ω · ∇v + ν∇2ω. (66)

In index notation, (66) is

v̄kω̄i
,k = ω̄j v̄i

,j + ν
(
ḡpkω̄i

,k

)
,p

. (67)

For the vortex ring studied herein, the middle term in (67), often referred to as the
vortex stretching term, is zero. To see this, note that the only non-zero component of
vorticity is ω̄3; therefore, j = 3 in (67). Since v̄i is independent of x̄3, the term is zero.
Therefore, the momentum equation reduces to

v̄2ω̄3
,2 = ν

(
ḡpkω̄3

,k

)
,p

. (68)

A solution for the case when the vorticity tensor is constant along any given streamline,
as it is for steady planar inviscid vortex structures, would be very appealing since this
would yield the simplification ω̄3

,2 = 0 in (68). However, the monotonic decrease in the
vorticity magnitude with distance from the symmetry axis, as depicted in figures 3–5
(the vorticity tensor itself decreases even more sharply), indicates that, at least for
the present vortex ring, ω̄3

,2 
= 0. Therefore, the viscous term in (68) must also be
non-zero.

The left-hand side of (68) expands as follows:

v̄2ω̄3
,2 = v̄2

(
∂ω̄3

∂x̄2
+ Γ̄ 3

m2ω̄
m

)
.

The only non-zero component of the vorticity tensor is ω̄3; therefore, m =3.
Consequently,

ω̄3
,2 =

(
∂ω̄3

∂x̄2
+

1

2ḡ33

∂ḡ33

∂x̄2
ω̄3

)
. (69)
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Note that the right-hand side of (69) can be grouped as follows:

ω̄3
,2 =

1√
ḡ33

∂

∂x̄2
(
√

ḡ33ω̄
3). (70)

This is simply the derivative of the physical component of vorticity in the 03-direction
divided by

√
ḡ33. Substituting (54) into (70) and consolidating in index notation gives

ω̄3
,2 =

J αβ

√
ḡ33

∂

∂x̄2

[√
ḡ33√
ḡ

∂

∂x̄β

(
ḡα2√

ḡ
ψ ′

)]
. (71)

Note the relationship between (71) and (57), particularly when η = 1 so that γ =2.
In order to look for an inviscid solution, we would set (70) equal to zero (according
to (68)) and perform the integration, from which we would find that the physical
component of vorticity must remain constant along any streamline.

4. Invariants
4.1. Kinetic energy

The kinetic energy of a stationary vortex ring with large elliptical cross-section is

E =
1

2
ρ

∫
–̄V

v̄2v̄
2√

g dV̄

=
1

2
ρ

∫ x̄1
max

0

∫ 2π

0

∫ 2π

0

√
g22v̄

2v̄2√
g dx̄3 dx̄2 dx̄1

= πρ

∫ x̄1
max

0

∫ 2π

0

√
g22v̄

2v̄2√
g dx̄2 dx̄1.

4.2. Impulse

The impulse is given by

I =
1

2
ρ

∫
–̄V

(R × ω)
√

ḡ dV̄

=
1

2
ρ

∫ x̄1
max

0

∫ 2π

0

∫ 2π

0

R ω̄(3)
√

ḡ dx̄3 dx̄2 dx̄1

= πρ

∫ x̄1
max

0

∫ 2π

0

R
√

g33ω̄
3
√

ḡ dx̄2 dx̄1

≈ πρ

∫ x̄1
max

0

∫ 2π

0

RR ω̄3
A

√
ḡ dx̄2 dx̄1.

4.3. Circulation

The circulation can be found from (25):

Γ = ω̄3
AS̄3

(
x̄1

max

)
where S̄3(x̄

1
max) = πAB2(x̄1

max)
3cmax = πab(RO + RI )/2. By combining this value with

(35), we have

Γ =
8vORO(RO − RC)

[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
a2B2

(
R2

O − R2
I

) π ab
(RO + RI )

2

� Γ =
4πx̄1

maxvORO(RO − RC)
[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
aB(RO − RI )

. (72)
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Figure 6. Geometrical parameters of a family of vortex rings with RC = 0.025 m, k = 0,
I = 0.038N s, E/Γ = 0.104, ρ = 1000 kgm−3.

4.4. Examples

The method of non-dimensionalizing the invariants depends upon the way in which
the vortex ring is generated. For a vortex ring generated by an axisymmetric jet in a
quiescent fluid, Mohseni & Gharib (1998) show two methods for non-dimensionalizing
the kinetic energy and the circulation. The first method involves Norbury’s mean core
radius, α:

EN =
E

(ωα)2R5
C

, ΓN =
Γ

ωαR2
C

,

where ω is the constant vorticity tensor in spherical coordinates. The second method
uses combinations of the invariants, as follows:

End =
E√

ρ IΓ 3
, Γnd =

Γ

I 1/3U
2/3
P

.

The dimensionless kinetic energy above is essentially the same as that used by Gharib
et al. (1998) and by Mohseni, Ran & Colonius (2001).

For vortex rings that form in axisymmetric wake flows, the following formulae have
been used to non-dimensionalize the invariants (see e.g. Johari & Stein 2002):

ΓW =
Γ

v∞D
, EW =

E

ρv2
∞D3

, IW =
I

ρv∞D3
,

where v∞ is the free-stream velocity and D is the diameter of the axisymmetric body.
The subscript W signifies that the vortex ring is formed by a wake.

Figure 6 shows various geometrical parameters of a family of vortex rings with
common values of RC , k, I , and E/Γ but with varying axis ratio. The integrations for
the kinetic energy and the impulse were performed numerically using the Composite
Simpson’s method. Figure 7 shows a family of vortex rings with the axis ratio held
fixed at a/b = 1.5 and the vortex centre, RC , allowed to vary. Figure 8 shows the
vortex geometry and corresponding velocity magnitude at z = 0 for a vortex ring
roughly comparable to one studied by Gharib et al. (1998).
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Figure 7. Family of vortex rings with I = 0.038N s, E/Γ = 0.104, ρ = 1000 kgm−3, a/b = 1.5,
and k = 0.

Figure 8. Vortex rings and velocity profile with vO = 0.04m s−1, RC = 0.027 m, a/b = 1.7,
α = 0.7295, Γ = 80 cm2 s−1, E = 0.0082 J, I = 0.021N s, Γnd ≈ 0.112, End = 2.47, ΓN = 0.0594,
EN = 0.0166, IN = 0.215, ΓW ≈ 3.7, EW ≈ 33, IW ≈ 3.4, ρ = 1000 kgm−3. Assumptions: piston
velocity UP ≈ vI ; free-stream velocity v∞ ≈ vO .

5. Application to the Strouhal number
The vortex shedding period in unsteady wake flows is related to the period of

the time-mean toroidal vortex resulting from conditional sampling over one shedding
cycle. The period of the time-mean vortex can be determined by integrating (36), as
follows:∫ 2π

0

√
ḡ dx̄2 = vOROB(1 − k)

(
x̄1

x̄1
max

)3
c

cmax

[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
[P (x̄1) + Q(x̄1)]

∫ T

0

dt,

π(2RC − 3x̄1Bk) =
vORO(1 − k)

x̄1A

(
x̄1

x̄1
max

)3
c

cmax

[
P

(
x̄1

max

)
+ Q

(
x̄1

max

)]
[P (x̄1) + Q(x̄1)]

T .

Since the shedding frequency, fS , is related to the period of the time-mean vortex by
fS = m/T , where m is the number of vortices shed downstream per shedding cycle,
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Figure 9. Strouhal number defined by (75) versus radial distance from axis of symmetry at
z = 0 for the vortex rings in figures 3, 4 and 5 (m= 1).

we have

fS =
mvORO

2πARC

x̄1(
x̄1

max

)2

[
P

(
x̄1

max

)
− c

(
x̄1

max

)]
[P (x̄1) − c(x̄1)]

. (73)

Here some simplification has been gained by assuming k = 0.
A Strouhal number can be defined by

SO =
fS(RO − RC)

vO

=
mRO(RO − RC)

2πaRC

(
x̄1

x̄1
max

) [
P

(
x̄1

max

)
− c

(
x̄1

max

)]
[P (x̄1) − c(x̄1)]

. (74)

Notice that the Strouhal number is independent of the direction, x̄2, and should,
therefore, remain constant along streamlines within the core. It varies in the x̄1-
direction and can be evaluated at the axial station coincident with the vortex centre
by letting x̄2 = ±π/2. Along the line x̄2 = π/2 the coordinate x̄1 is given by

x̄1 =
b

B

(R − RC)

(RO − RC)
(x̄2 = π/2),

and when x̄2 = −π/2:

x̄1 =
b

B

(RC − R)

(RC − RI )
(x̄2 = −π/2).

Simplifying, (74) becomes

SO ≡ fS(RO − RC)

vO

=
mRO |R − RC |

2π aRC

[
P

(
x̄1

max

)
− c

(
x̄1

max

)]
[P (x̄1) − c(x̄1)]

. (75)

Values of this Strouhal number at z = 0 are shown in figure 9 for the vortex rings
shown in figures 3, 4, and 5. The Strouhal number defined by (75) is related to the
classical definition (St = fsD/v∞) as follows:

St = S
vO

v∞

D

(RO − RC)
. (76)
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The grouping defined by (75) may be of use in vortex shedding studies of axisymmetric
flows.

A Strouhal number can also be formulated in terms of properties at the inner
radius rather than the outer radius. From (65) we know that vORO = vIRI ; therefore,
these quantities can be interchanged in (73), giving

SI ≡ 2fSRI

vI

=
mR2

I |R − RC |
π aRC(RO − RC)

[
P

(
x̄1

max

)
− c

(
x̄1

max

)]
[P (x̄1) − c(x̄1)]

. (77)

This grouping would correspond roughly to fSD/vJ , where D is the jet diameter and
vJ is the jet velocity.

6. Conclusion
Hill’s vortex was discussed and shown to be a spherical region of uniform vorticity.

An explicit algebraic expression was found for the velocity field within a steady,
toroidal vortex with large elliptical cross-section. The vorticity decreases monotonically
with distance from the symmetry axis. As the inner radius of the torus approaches
zero, the velocity of the central jet increases without bound due to the infinitely
small flow area available for the reverse flow. This does not occur in the spherical
vortex because the bounding streamline contains two points of zero velocity, namely
the forward and rear stagnation points. The toroidal vortex appears to be more
suitable for modelling centrally driven (jet) flows, whereas the spherical vortex may
be more suitable for modelling externally driven (wake) flows. A general formulation
for the stream function is presented that satisfies the continuity equation in coordinate
systems for which a certain statement (equation (46)) can be made about the flow in
one of the coordinate directions. A Strouhal number formulation is presented based
on the solution for the velocity field within the time-mean vortex ring.
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